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1 Objectif

Déterminer la viscosité dynamique n du glycérol en étudiant la chute verticale d’'une bille en
acier, et confronter le modéle de Stokes aux résultats expérimentaux en tenant compte des effets

de bords.

2 Hypotheéses

— Le référentiel terrestre est supposé galiléen.

— La bille atteint une vitesse limite constante.

3 Matériel et équipements

— Eprouvette contenant du glycérol (p 5 =1260kgm™3).
— Bille en acier (p = 7800 kg m~3, rayon r).

— Systéme d’acquisition vidéo et logiciel de pointage (LatisPro).

4 Principe théorique

Question 1 : Equation différentielle

Etablir I’équation différentielle vérifiée par la vitesse v(t) de la bille.
Bilan des forces s’exercant sur la bille dans le référentiel du laboratoire (axe Oz vertical
descendant) :

— Le poids : P= mg
— La poussée d’Archimeéde : I = -myg = —p;Vg
— La force de frottement fluide (Stokes) :
D’aprés la seconde loi de Newton (3> F =m

f: —6mnrd
@), en projection sur (Oz) :
ma = mg — pgVg — 6mnro

En remplacant a par %, on obtient :

d
md—;} =mg — pyVg— 6mnro

d
m< +6mnrv=mg — psVyg

dt
dv  6mnr prV
= — (1Y
dt + m v =9 m )

Question 2 : Constante de temps et vitesse limite

On a:
d1+6wnrv:g 1—p—f
dt m p
et on reconnait :
dv 1 _ Vim
dt 7 T
Par identification :
— Constante de temps : 7 = 6%”
20(p—
— Vitesse limite : vy, = 7¢g (1 — %f> = %’;W)



5 Protocole expérimental

Le protocole suit les étapes de pointage vidéo décrites dans le sujet : étalonnage, placement
des axes, et pointage manuel des positions successives de la bille lors de sa chute dans I’éprouvette.

6 Reéalisation

Les mesures ont été effectuées via le logiciel LatisPro. Les données de position z(t) et de
vitesse v(t) ont été extraites.

7 Observations et interprétations qualitatives

On observe sur les courbes (voir section suivante) que la vitesse augmente initialement (régime
transitoire) avant de se stabiliser autour d’une valeur constante (régime permanent), validant
I’hypothése de I'existence d’une vitesse limite.

8 Reésultats quantitatifs
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FIGURE 1 — Evolution temporelle de la position z(t) (courbe verte) et de la vitesse v(t) (courbe
violette) modélisées dans LatisPro.

9 Analyse des résultats

Question 3 : Calcul de la masse

Données : pgeier = 7800 kg m 3 et r=125mm= 1,25 % 103 m.

4
m:pV:pX§7TT3

4
m = 7800 x 27(12,5 x 107%)3 ~ 6,38 x 1072 kg ~ 0,064kg = 64 g



Question 4 : Résolution de I’équation différentielle
L’équation différentielle du mouvement établie en Q2 s’écrit :

dv 1 vy

— 4+ —
dt T T
La solution générale v(t) est la somme de la solution de I’équation homogéne (vy) et d’une
solution particuliére (vp) :
v(t) = vn(t) + vy
1. Solution de I’équation homogéne (vp,) :
On résout 1'équation sans second membre % + 2 = 0. La solution est de la forme :

op(t) = Ae /T

avec A une constante d’intégration réelle.
2. Solution particuliére (v,) :
On cherche une solution constante (régime permanent) vérifiant 1’équation compléte. Si v
est constante, % =0, dou:
Up _ Ulim

— = e Upzvlim
T T

L’expression générale de la vitesse est donc :
o(t) = Ae™T + vy,

Détermination de la constante A (Conditions initiales) :
A Vinstant ¢ = 0, la bille est lachée sans vitesse initiale, donc v(0) = 0.

U(O):A-eo—l—vlim:()

A+ vim =0 = A= —v;m

En réinjectant A dans I’équation, on obtient ’expression finale de la vitesse :
v(t) = —viime™" + Viim

Soit en factorisant :

v(t) = Viim (1 — e_t/T)

Question 5 : Déduction de la viscosité n
D’apreés la modélisation sur le graphe (Figure 1), la vitesse limite expérimentale est :

Vim A~ 1,284ms™!

En inversant la formule de la vitesse limite trouvée en Q2 :

_ 2r%(p—py)
n= 97
Vlim
2% (1,25 x 107%)2 x 9,81 x (7800 — 1260)
= 9 x 1,284
n~1,74Pas

La valeur théorique est ny, = 1,49 Pas. L’écart relatif est d’environ 16%.



Conversion de 'unité (Pas en unités de base)

Pour montrer que le Pascal-seconde (Pas) équivaut a des kg m~!

1. Le Pascal (Pa) est une pression, soit une force divisée par une surface :

Pa = N

m?2

2. Le Newton (N) est une force (F' = ma), soit une masse fois une accélération :

N = kg - ms 2

3. Substitution : On remplace N dans I'expression du Pascal :

ko -m-s 2
Pa:&:kg.m_l.s_Q

m2
4. Résultat final : On multiplie par la seconde (s) pour avoir des Pa - s :

Pa-s=(kg-m1-s2%) xs

Pa-s=kg -m s !

Question 6 : Modélisation du frottement
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FIGURE 2 — Evolution temporelle du frottement f(t) (courbe cyan) modélisée dans LatisPro.

Question 7 : Affinement du modéle (Effets de bords)

1. Expression de la nouvelle force de frottement

Dans une éprouvette de rayon R, la proximité des parois augmente les frottements. La force

de Stokes f est modifiée par un facteur correctif dépendant du rapport r/R :

- 6mnr
fo o bmr
1-214
Cette expression remplace la force f = —67nrd utilisée dans le modéle précédent (modéle infini).

450



2. Nouvelle équation différentielle

En réinjectant cette nouvelle expression de la force dans la deuxiéme loi de Newton () F =
ma) projetée sur 'axe vertical (Oz) :

dv 6mnr
m— =mg —msg — ————50
1-2,15

En divisant par la masse m, on obtient la forme canonique :

dv 6mnr P
D T A 1- 5L
it T —21n)" g( P

3. Identification des nouveaux paramétres

Cette équation différentielle est de la méme forme mathématique que la précédente :

/
dv v vy

dt 7! 7!
Cependant, la constante de temps 7’ et la vitesse limite v}, sont modifiées par le terme correctif
K= (1-21%).
D’apreés 'identification :
— Nouvelle constante de temps 7’ :

1 1 1 , r
o lx = = 1—21f)
7K 7 T( R

— Nouvelle vitesse limite v}, : Comme pour le premier modeéle, la solution particuliére
(vitesse limite) est atteinte quand % =0.

tuma1-2) ¢

En remplagant 7/ par son expression :

vfim:g<l—[z>7x(1—2,1;)
—_—

Viim

.
T —— (1 _9, 15)

Conclusion sur le modéle

Le terme (1 -2, 1%) étant inférieur & 1, la vitesse limite théorique calculée avec ce modéle
sera "plus faible" que celle du modéle infini. Cela signifie que les parois "freinent" la bille. Comme
noté dans ’analyse, ce modéle est plus adapté et plus précis car il prend en compte la géométrie
réelle de l'expérience (le rayon de I’éprouvette).



Question 8 : Modélisation du nouveau systéme de frottements
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FIGURE 3 — Evolution temporelle du nouveau systéme de frottement f1(¢) (courbe verte) mo-
délisée dans LatisPro.

10 Conclusion

Question 9 : Conclusion générale

L’étude a permis de vérifier que les deux modéles fonctionnaient mais que le modéle corrigé
était plus adapté car il est plus précis et prend en compte le rayon de I’éprouvette.
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