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1 Objectif

Déterminer la viscosité dynamique η du glycérol en étudiant la chute verticale d’une bille en
acier, et confronter le modèle de Stokes aux résultats expérimentaux en tenant compte des effets
de bords.

2 Hypothèses

— Le référentiel terrestre est supposé galiléen.
— La bille atteint une vitesse limite constante.

3 Matériel et équipements

— Éprouvette contenant du glycérol (ρf = 1260 kgm−3).
— Bille en acier (ρ = 7800 kgm−3, rayon r).
— Système d’acquisition vidéo et logiciel de pointage (LatisPro).

4 Principe théorique

Question 1 : Équation différentielle

Établir l’équation différentielle vérifiée par la vitesse v(t) de la bille.
Bilan des forces s’exerçant sur la bille dans le référentiel du laboratoire (axe Oz vertical

descendant) :
— Le poids : P⃗ = mg⃗

— La poussée d’Archimède : Π⃗ = −mf g⃗ = −ρfV g⃗

— La force de frottement fluide (Stokes) : f⃗ = −6πηrv⃗

D’après la seconde loi de Newton (
∑

F⃗ = ma⃗), en projection sur (Oz) :

ma = mg − ρfV g − 6πηrv

En remplaçant a par dv
dt , on obtient :

m
dv

dt
= mg − ρfV g − 6πηrv

m
dv

dt
+ 6πηrv = mg − ρfV g

dv

dt
+

6πηr

m
v = g(1−

ρfV

m
)

Question 2 : Constante de temps et vitesse limite

On a :
dv

dt
+

6πηr

m
v = g

(
1−

ρf
ρ

)
et on reconnait :

dv

dt
+

1

τ
v =

vlim
τ

Par identification :
— Constante de temps : τ = m

6πηr

— Vitesse limite : vlim = τg
(
1− ρf

ρ

)
=

2r2g(ρ−ρf )
9η
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5 Protocole expérimental

Le protocole suit les étapes de pointage vidéo décrites dans le sujet : étalonnage, placement
des axes, et pointage manuel des positions successives de la bille lors de sa chute dans l’éprouvette.

6 Réalisation

Les mesures ont été effectuées via le logiciel LatisPro. Les données de position z(t) et de
vitesse v(t) ont été extraites.

7 Observations et interprétations qualitatives

On observe sur les courbes (voir section suivante) que la vitesse augmente initialement (régime
transitoire) avant de se stabiliser autour d’une valeur constante (régime permanent), validant
l’hypothèse de l’existence d’une vitesse limite.

8 Résultats quantitatifs

Figure 1 – Évolution temporelle de la position z(t) (courbe verte) et de la vitesse v(t) (courbe
violette) modélisées dans LatisPro.

9 Analyse des résultats

Question 3 : Calcul de la masse

Données : ρacier = 7800 kgm−3 et r = 1,25mm = 1,25× 10−3m.

m = ρV = ρ× 4

3
πr3

m = 7800× 4

3
π(12, 5× 10−3)3 ≈ 6,38× 10−2 kg ≈ 0,064 kg = 64 g
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Question 4 : Résolution de l’équation différentielle

L’équation différentielle du mouvement établie en Q2 s’écrit :

dv

dt
+

1

τ
v =

vlim
τ

La solution générale v(t) est la somme de la solution de l’équation homogène (vh) et d’une
solution particulière (vp) :

v(t) = vh(t) + vp

1. Solution de l’équation homogène (vh) :
On résout l’équation sans second membre dv

dt +
v
τ = 0. La solution est de la forme :

vh(t) = Ae−t/τ

avec A une constante d’intégration réelle.
2. Solution particulière (vp) :

On cherche une solution constante (régime permanent) vérifiant l’équation complète. Si v
est constante, dv

dt = 0, d’où :

vp
τ

=
vlim
τ

=⇒ vp = vlim

L’expression générale de la vitesse est donc :

v(t) = Ae−t/τ + vlim

Détermination de la constante A (Conditions initiales) :
À l’instant t = 0, la bille est lâchée sans vitesse initiale, donc v(0) = 0.

v(0) = A · e0 + vlim = 0

A+ vlim = 0 =⇒ A = −vlim

En réinjectant A dans l’équation, on obtient l’expression finale de la vitesse :

v(t) = −vlime−t/τ + vlim

Soit en factorisant :
v(t) = vlim

(
1− e−t/τ

)
Question 5 : Déduction de la viscosité η

D’après la modélisation sur le graphe (Figure 1), la vitesse limite expérimentale est :

vlim ≈ 1,284m s−1

En inversant la formule de la vitesse limite trouvée en Q2 :

η =
2r2g(ρ− ρf )

9vlim

η =
2× (1, 25× 10−3)2 × 9, 81× (7800− 1260)

9× 1, 284

η ≈ 1,74Pa s

La valeur théorique est ηth = 1,49Pa s. L’écart relatif est d’environ 16%.
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Conversion de l’unité (Pa s en unités de base)

Pour montrer que le Pascal-seconde (Pa s) équivaut à des kgm−1 s−1, on décompose les unités :

1. Le Pascal (Pa) est une pression, soit une force divisée par une surface :

Pa =
N

m2

2. Le Newton (N) est une force (F = ma), soit une masse fois une accélération :

N = kg ·ms−2

3. Substitution : On remplace N dans l’expression du Pascal :

Pa =
kg ·m · s−2

m2
= kg ·m−1 · s−2

4. Résultat final : On multiplie par la seconde (s) pour avoir des Pa · s :

Pa · s = (kg ·m−1 · s−2)× s

Pa · s = kg ·m−1·s−1

Question 6 : Modélisation du frottement

Figure 2 – Évolution temporelle du frottement f(t) (courbe cyan) modélisée dans LatisPro.

Question 7 : Affinement du modèle (Effets de bords)

1. Expression de la nouvelle force de frottement

Dans une éprouvette de rayon R, la proximité des parois augmente les frottements. La force
de Stokes f⃗ est modifiée par un facteur correctif dépendant du rapport r/R :

f⃗ = − 6πηr

1− 2, 1 r
R

v⃗

Cette expression remplace la force f⃗ = −6πηrv⃗ utilisée dans le modèle précédent (modèle infini).
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2. Nouvelle équation différentielle

En réinjectant cette nouvelle expression de la force dans la deuxième loi de Newton (
∑

F⃗ =
ma⃗) projetée sur l’axe vertical (Oz) :

m
dv

dt
= mg −mfg −

6πηr

1− 2, 1 r
R

v

En divisant par la masse m, on obtient la forme canonique :

dv

dt
+

6πηr

m
(
1− 2, 1 r

R

)v = g

(
1−

ρf
ρ

)

3. Identification des nouveaux paramètres

Cette équation différentielle est de la même forme mathématique que la précédente :

dv

dt
+

v

τ ′
=

v′lim
τ ′

Cependant, la constante de temps τ ′ et la vitesse limite v′lim sont modifiées par le terme correctif
K =

(
1− 2, 1 r

R

)
.

D’après l’identification :

— Nouvelle constante de temps τ ′ :

1

τ ′
=

1

τ
× 1

K
=⇒ τ ′ = τ

(
1− 2, 1

r

R

)
— Nouvelle vitesse limite v′lim : Comme pour le premier modèle, la solution particulière

(vitesse limite) est atteinte quand dv
dt = 0.

v′lim = g

(
1−

ρf
ρ

)
τ ′

En remplaçant τ ′ par son expression :

v′lim = g

(
1−

ρf
ρ

)
τ︸ ︷︷ ︸

vlim

×
(
1− 2, 1

r

R

)

v′lim = vlim

(
1− 2, 1

r

R

)
Conclusion sur le modèle

Le terme
(
1− 2, 1 r

R

)
étant inférieur à 1, la vitesse limite théorique calculée avec ce modèle

sera "plus faible" que celle du modèle infini. Cela signifie que les parois "freinent" la bille. Comme
noté dans l’analyse, ce modèle est plus adapté et plus précis car il prend en compte la géométrie
réelle de l’expérience (le rayon de l’éprouvette).
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Question 8 : Modélisation du nouveau systéme de frottements

Figure 3 – Évolution temporelle du nouveau système de frottement f1(t) (courbe verte) mo-
délisée dans LatisPro.

10 Conclusion

Question 9 : Conclusion générale

L’étude a permis de vérifier que les deux modèles fonctionnaient mais que le modèle corrigé
était plus adapté car il est plus précis et prend en compte le rayon de l’éprouvette.
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